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Abstract-A matrix model of radiative transfer is presented. Beginning with the radiative properties of a 
medium, two characteristic matrices representing the transmissive and reflective contributions to energy 
transfer are written and the intensity distribution is then calculated numerically. Applications to pure 
radiative transfer and combined transfer with conduction are presented. A case of a material composed of 
silica fibres is discussed, showing that the model is in good agreement with experimental results. Since no 
simplifying hypotheses concerning the properties of the medium are incorporated into the model. it can 

be used to study any fibrous medium. 

1. INTRODUCTION 

RADIATIVE transfer through fibrous media is the sub- 
ject of a large number of studies because of its multiple 
practical applications, especially in thermal insu- 
lation. A theoretically derived model for the characteriz- 
ation of radiative transfer will be presented in the 
current work, one which can be easily applied to the 
explanation of experimental measurements. 

The basics of our problem are found in works on 
radiative transfer in participating media. Several 
books are available that treat the modelling aspect, 
including that by Ozisik [I] on the different existing 
methods of solution and another by Chandrasekhar 
[2] which is more particularly concerned with the dis- 
crete ordinates methods. In the field of approximate 
methods the two-flux approximation is commonly 
used, namely by Tong and Tien [3, 41, or in recent 
works by Guilbert [S, 61, Banner [7] and Jeandel et al. 

[8]. The results obtained are interesting, but a more 
thorough modeiling treatment was needed in order 
to obtain a better description. Roux et al. [9], and 
more recently Houston [IO], addressed this point by 
using a numerical treatment based on the discrete 
ordinates method. In a different domain, but still using 
such spatial discretization methods as the starting 
point, matrix-methuds are used for the study of radi- 
ative transfer in gases. Goody and Yung [l I], Flatau 
and Stephens 1121, Waterman [13] and Wiscombe [I41 
have all written good reviews on this subject. 

We focused our attention on the calculation of pre- 
cise values of the radiative properties, taking into 
account their spectral and directional variations. The 
interaction between a fibre and radiation is the basis 
of the model presented here. Some solution methods, 
such as those of Kerker [I 51 and Lind and Greenberg 
[16] can be directly written into numerical form. The 
case of a medium composed of fibres may then be 

studied based on the work of Lee [ 17,181, who showed 
the influence of the morphoiogical characteristics of 
the medium, and in particular the orientation of the 
fibres, on the radiative transfer. 

Considering the results obtained, it becomes poss- 
ible to develop a formulation that is physically rep- 
resentative of the observed scattering phenomena. 
Furthermore, an understanding of the strongly aniso- 
tropic nature of this sort of problem allows one to 
perform an appropriate discretization of the problem 
and thus properly use matrix methods [ 191. 

We will first examine how to determine the usual 
radiative properties : the spectral absorption, scat- 
tering and extinction coefficients. We will also define 
parameters called ‘bidirectional scattering coef- 
ficients’, which offer a convenient representation of the 
scattering geometry. The adaptation of the radiative 
transfer equation to matrix form, and its subsequent 
solution will then be discussed. Following this, two 
different physical cases can be treated with the model 
developed here, the first being purely radiative as it 
appears in transmission or reflexion measurements, 
and the second being radiation combined with con- 
duction as encountered in the simulation of heat trans- 
fer through fibrous insulating materials. 

Model simulations on a medium composed of silica 
fibres will be compared to results obtained from exper- 
iments in the case of fibres oriented in planes parallel 
to the boundaries. 

2. MODEL DEVELOPMENT 

Consider the problem of radiation heat transfer 
through a planar fibrous medium. The associated 
transfer equation represents the wave-matter inter- 
actions, taking into account the medium properties. 
For an absorbing-scattering-emitting medium, as- 



NOMENCLATURE 

.I, source function 
I. medium thickness 

I., spectra1 inlcnsity 

I.,,, black body spectral intensity 
>2; density of fibre 

; 

spectral phase function 
monochromatic efficiency 

::: 
heat flux by conduction 
heat fux by radiation 

I radius of fibrc 
7- tcmpcraturc 

.I‘ abscissa. 

Greek symbols 
i wavelength 

i, thermal conductivity 

l’ cos ; 
polar angle 

(T .I/ spectral absorplion coefficient 

fl\/ spectral scattering cocfficicnt 

fl,, spectral extinclion cocfficicnt 
('J azimuthal angle. 

Subscripts 
;t absorption 
t‘ extinction 
f fibre 
S scattering. 

sunning transfer in the j.-direction with axial sym- Using the spatial discretization shown schc- 
metry. this equalion can be written : matically in Fig. I, equation (2) can be rewritten in 

i7L,(?,* ,o 
matrix form. Let us define four column vectors of w 

/L i,. = -rr,,(~oL,(?,,~o+J,(!,.~o (1) elements: L,+ (.I‘), L, (J,). B,+(J) and B, (JX) such that: 

where /i is the cosine of the polar angle between the 
fori= I , , (P?i2) : 

direclions of propagation and transfer. 

In equalion (I) J, is generally called the source- 
I*/+ (.l’) = [L, 0,. 1411 

funclion, which represents internal emission and the and 

intensity of the scattering in the /c-direction : 

+~.,,(P)L,,m!~)l (I’) 

where L,,,(T) is the monochromatic intensity of the 
black body at temperature T. and 

The calculation of the diffcrcnt radiative properties 
used hcrc is essential. As can bc seen from the above 
cxprcssions. these arc both spectral and directional 
\~ariables. Moreover. in this general form of the radi- 

B, (.r) = 

ativc transfer equation, the phase function does not 
appear alone. but rather in a product with the scat- 
tering coefficient. Thcsc problems will bc discussed in 
Section 3. 

Equation (I) poses a problem linked with the intc- 
grid term. Dividing the problem space into a given 
number of directions yields the following system of 
dift‘crcnlial equations : 

The symmetry properties obtained with this rcp- 
resentation allow us to write the radiative transfer 
cquatlon as (XC Flatau and Stephens [I21 and 
Stamnes and Swanson [20]) : 

for i = I. . m 

where the monochromatic coefficients C,,, take into 
account the scattering representation and the weights 
of integration. 

?L, (I,) L 1 iJ> = [A,II~,(?,)I + [B,(?~)l (3) 

whcrc 

and 

with 

[L,(Y)1 = 
L,t CT) I 1 L (,‘) 

* 

[B,(.v)l = 
B: (.I? 

i  I B ( ,‘) 

x , 
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FIG. 1. Directions of discretization 

3. CALCULATION OF THE RADIATIVE 

PROPERTIES 

where 2 and /< are (m/7) x (42) matrices ofelements: In order to determine values for the monochromatic 

coefficient, the method presented by Lee 1171 based 

on the monochromatic efficiencies (Q,) as described 
by Kcrker [15] was used here. In the case of fibres 
stratified in planes parallel to the boundaries, with 
random azimuthal orientation, one obtains : 

for iand.j= I ,.... ‘t. 

Two applications will be treated in the following 
section : 

(i) the problem of radiative transfer without inter- 
nal emission. This is the case encountered in exper- 
imental studies using a lock-in amplifier and allowing 
the determination of the bidirectional reflectance or 
transmittance. Equation (3) thus simplifies to : 

(ii) the problem of combined radiation and con- 
duction. This is a situation often encountered when 
modelling fibrous materials such as those used in resi- 
dential or industrial insulations. In this case, an equa- 
tion of conservation of energy must be added to the 
radiative transfer equation as will be discussed in Sec- 
tion 5. 

where Y is the fibre radius and iV(r, ~1)~) is the density 
of fibres of radius r, oriented in the direction (0,. 

The product ‘o,, * P,’ was used to represent the scat- 

tering geometry. This is a more convenient approach 
than calculating a singie phase function since this term 
appears explicitly in the radiative transfer equation. In 

typical ‘two-flux’ models, two characteristic factors. 
one for backscattering and the other for for- 
wardscattering must be found. The scattering cone 
defined by Kerker is thus divided into two parts which 
correspond to each hemisphere of propagation. This 
principle was used here, but instead of considering 
two single directions, we divided space into r?z sectors 
and determined the amount of radiative energy scat- 
tered in each sector. WC thus considered scattering 
linked with a given direction of the scsttering cone. 0,. 
and we determined the direction /I, that corresponds to 
0,. This led to the elementary quantity : 
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(6, 

where the subscript k indicates that the result is 

obtained in the fl,-direction, and I(O,, 4) is the inten- 
sity of the scattered wave as discussed and defined by 
Kerker [ 151. After adding up all the quantities which 

correspond to the given scattering direction iis, bidi- 
rcctional scattering coeficicnts were obtained that 
represented the scattering from one direction I!, to the 
direction IL 

Since this method was applied numerically, angle 
sectors with a given width and centred on specified 

directions wet-e used in the solution scheme instead 
of considering only single directions. This method 
provides the coefficients c‘,,, used in equation (2). 

WC studied the case of a medium with a volumetric 
mass of 10 kg tn -I. composed of silica fibres with a 

diameter of 7 microns oriented in planes parallel to 
the boundaries. The strongly non-grey behaviour of 
such a medium has been previously described [8], 

particularly the Christiansen effect, leading to an 
extinction decrease at 7.3 microns. 

Taking into account the spectral variations of the 

radiative properties, the influence of the incidence 
direction at a given wavelength was studied. Values 

of the different coeficicnts oLI,, c~,,, and r~,~, are shown 
in Fig. 2. where it can be seen that there is a decrease 
of nearly 35% as the incidence angle rises (the mini- 
mum is found for an angle of 90” that corresponds to 
a radiation parallel to the fibres). 

Variations of the bidirectional scattering coef- 

ficicnts arc given in Fig. 3. The value of the incident 
polar angle is indicated fot- each curve. \ihcre the 
part scattered in angular sectors around the ditf‘erenr 

discrete directions is rcprcscnted. In order to obtain 
slight variations. we worked on ‘scattering sectors’ 
with a width of 2 . Four observations can bc readily 
made : 

(i) the phenomena are strongly anisotropic: 
(ii) there is a scattering peak in the incident dircc- 

lion ; 
(iii) a high degree of backscattcring was observed 

(part of the curve between 90 and 180 ) ; 
(iv) a second peak in the specular direction appears 

as a consequence of the partitioning of the fibres into 
parallel planes. 

Those variations must be taken into account in 

order to properly model the radiative energy transfer. 
This type of variation can also be used to explain the 
lilllitations of the classical approximations, such as 
the ‘two flux model’ which uses only two coefficients 
to represent the scattering. 

In order to test the accuracy of our scattering rep- 

resentation, we compared our results to those of Hou- 
ston [IO], who worked on a medium composed ol 
isotropically oriented glass fibres using a Lcgendre 

polynomial expansion to calculate the phase function. 
Our bidirectional coefficients were calculated under 
the same conditions, and were normalized by dividing 
them by the global scattering coefficient P,;. Average 
values of the scattering phase function in the different 

angle sectors centres around the discrete directions 
were thus obtained. The use of a very fine step size 
then allows the plotting of the phase function profile. 
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FIG. 2. Variations of the coefficients with the angle of incidence for an incident wavelength ofX.2 microns 
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FIG. 3. Scattering representation for radiation of wavelength 20 microns at several incidences (7.5’-22.5’- 
37.5 -52.5’67.5 -82.5’). The width of the angular sectors centred around the scattering directions is 2’. 

The comparison is presented in Fig. 4, where it 4. HOMOGENEOUS PROBLEM SOLUTION 

appears that our results agree very well with those of 

Houston for this type of medium. The case of fibres In order to solve the homogeneous transfer 
stratified in parallel planes is also shown. The influ- problem, equation (4), which is in fact a system of 
ence of the fibres’ orientation becomes clear, especially homogeneous differential equations without a second 
where increase of backscattering with a peak in the term, must be resolved. It would appear that a con- 
specular direction is seen. venient method for solving such a problem is a matrix 

4 

3.5 

3 

2.5 

..:Houston’s results 

--:isotropic case 

-:anisotropic case 
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FIG. 4. Comparison of our results with those of Houston at a wavelength of 25 pm and at normal incidence. 



exponential method. which suggests a solution in the 
form : 

[L, (r)l = [Ll[cxp (A,.),)]. (7) 

However, several studies among those reviewed by 
F‘latau and Stephens [ 121 clearly demonstrate that for 
the range of optical depth WC are concerned with. a 
direct application of this method would be numcri- 

tally unstable. thus prohibiting any meaningful 
interpretation of the results. 

A method based on the USC of characteristic mat- 
rices which take the medium radiative propertics into 
account will therefore be rcquircd. These arc the trans- 

mission and the rcflcction matrices. The methods for 
finding such matrices have been reviewed by Flatau 

and Stcphcns [I?], Waterman [13] and Wiscombe [l4]. 
WC chose to use the nouh/i/ly-/nct/lor/. which begin- 
ning with the properties of a very thin layer, allows us 

to dctcrmine the reflective and transmission properties 
by succcssivc doublings of the medium depth. 

Let us define the matrices T,,, and R,,, as being 
the transmission and reflection matrices of a medium 

between the coordinates 0 and _r. The problem space 
is then divided into two hemispheres with intensity 
distributions of L,? ,md L, As these arc not scalar. 
but rather vectors quantities. this method is often 

called the frt’o-.~rrr~rnrs method by analogy with the 
two-flux method which does not take into account 
scvcral directions of transfer. Rewriting a radiative 

transfer equation with these matrices, and invoking 
the discrctization described earlier and the sup- 
position of medium homogeneity ; WC can write 

R,,, = R,,, and T,,, = T ,,,. from which we can obtain: 

Solving the system of equations (X). it bccomcs 
possible to detcrminc the intensity distributton at 

depth r from the intensity at depth 0. For boundary 
conditions known at two points, which is often the 

cast with the intcnsitics I.,-(O) and L, (f.), wc obtain 
the following system : 

T,, I<; (L)+ R,, L,+(r) 

where T,, and R,, are the transmission and the rcflec- 
tion matrices between ~7 and L. 

This type of problem may be solved using system 

(8) and boundary conditions such as : 

1 

L, (0. ,4) = &,,[T,,l 

L,+ (0, I(,+0 = 0 
(10) 

System (IO) expresses an incidence in the direction 
or, : for cxamplc the emission of a black body at tcm- 

perature T,,. 
The problem dchned by systems (8) and (IO) was 

solved in terms of L,?(L) and L,, (0). Twelve discrctc 
polar directions wet-c used in the numerical solution. 
The spectral variations of the direct transmission arc 
shown in Fig. 5. As expected, certain features such as 
the transmission peaks at 7.3 and 19.3 microns arc 

observed. These peaks correspond to the wavelength 

Wavelength (microns) 

FIG. 5. Normal direct transmittance as a function of wavelength for a medium of a thickness of 2 mm 
a volumetric mass of IO kg ni-‘. 

and 
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zone where the radiation extinction falls, as explained 

through the Christiansen effect. 
It is also possible to calculate some hemispherical 

properties such as those obtained with an integrating 
sphere. The flux leaving the fibrous medium is given 
by : 

F,(L) = 27c 
S’ 

L, (PL, L)P dp (Ila) 
,,- 0 

and the incident flux is 

s 

,ir+<>)/,iZ 

F,,(O) = 271 L, (~3 0)~ dp (1 lb) 
,,,+6,,r 2 

where L is the depth of the medium, p, is the incidence 
direction and 6/~, is the interval centred around p, 

representing the angular sector of incidence. 
The directional-hemispherical transmittance is then 

given by : 

F,(L) 
T’(L) = F,,(O) 

(12) 

The theoretical results obtained with this method 
are shown in Fig. 6. Some experimental measurements 
have already been made and a more precise exper- 
imental validation is in process [19]. An apparatus 
using a lock-in amplifier, a bolometer working at the 
temperature of liquid helium, a monochromator, an 
integrating sphere and an automated rotating system 
will be used to obtain other results that will be pub- 
lished soon. 

5. COMBINED TRANSFERS IN FIBROUS 
MEDIA 

The case of interest in this section is that of com- 

bined conduction and radiation. In order to simulate 
heat transfer through fibrous insulation, the equation 
of conservation of energy must be satisfied : 

div(Q,+Qr) = 0; 

where Qc is the conduction flux given by : 

(13) 

(13a) 

i., is the thermal conductivity of the medium and Qr 
is the total radiative flux given by : 

Qr = ’ 2n 
s S’ 

L,(J’, pL)/i dp dJ” (l3b) 
,=” /c=- I 

with L,,(y, p) obtained from the solution of the radi- 
ative problem. 

There are several ways to express the conductivity 

E.,, for example : 

(i) in a linear form as Houston [lo] did : I., = 
aT+b, 

(ii) according to another semi-empirical form as 

Banner [7] did, developing expressions based on 
experimental data obtained from a guarded hot plates 
apparatus at the Research Centre of Saint-Gobain. 

Note that those expressions may take into account 

convective phenomena as a corrective term, this gives 
more generality to our problem. 

FIG. 6. 
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The coupled nature of the problem is seen through 
the presence of the temperature distribution in both 
equations (1) and (13). This leads to a system of 
two simultaneous equations in two unknowns : T and 

l,,(r). 

5. I. Rudiuticv tran@r 

This problem has an additional term with respect to 
that studied in the last section, that being the internal 
emission of the medium. A look at how the trans- 

mission matrices vary with medium depth shows that 
any influence of external radiation on the medium 
disappears rapidly. The internal emission term is 
therefore very important. and has an influence on the 
intensity distribution far from the material bound- 

aries. For example, in the case of a material composed 
of silica fibres with a volumic mass of IO kg m ‘, the 
distance at which the boundaries no longer influence 

the energy transfer varies as a function of the wave- 
length. but is on the order of 1 cm. This observation 
supports Rosseland’s approximation, which. how- 
ever, is not sufficient if we wish to find an exact sol- 

ution to our problem. 
The system of equations to be solved in matrix form 

is given by equation (3). Suppose that we can write 
the intensity L,(J) as the sum of one homogeneous 
part L,,(J) and a particular part L+(,t,). such that 
L,,,(J>) is the solution of the homogeneous problem 
and L,,(J) is the intensity linked to the internal emis- 
sion. In a classical solution of a non-homogeneous 
differential equation this would be analogous to seek- 
ing an homogeneous and a particular solution. 

The homogeneous part satisfies the system of equa- 
tions (9) in the form : 

[$t:;] = [ 
T,,, G (0) + R,,, L,,,(J) 

r,.,Lg(L)+R,,L~.+(.~) I 
(14) 

The solution to the particular part may be sought in 
polynomial form : 

L,,(y) = 2 Z,,y”. (15) 
n-O 

In order to do this, the term B,(y) is written as : 

,z = 0 

and the corresponding solutions Z,, are calculated 
from the transfer equation (see Stamnes [20]). 

By identifying the same power coefficients we 

obtain : 
H/ 2 

,~%,2(6.,(~,)6,,-C,,)zy(,l,) = J&h) (16) 

and 
,J? 2 

,_F>, ,(~,,.(~,)S,,-C,,)Z,,(~,) 

= X,,(K) - (n + 1 hZ,z+ I (PJ 

(n from 1 to N-l). 

For the applications we are interested in. where the 
real temperature distribution is nearly linear, only 
very few terms are needed to exactly represent the 
internal emission. 

To complete the problem the boundary conditions 
L,+ (0) and L, (L) arc incorporated. In the cast ol 
black boundaries WC obtain : 

L,T (0) = L,,, [T(O)] = L,;, (0) + z,, 

L, (f.) = L,,,[T(L)] = L,,(L)+ f Z,,f.” (17) 
(? 0 

since 7-,~, = T,,,, = [I] and R,,, = R ,,,, = [0], where [I] 

is the identity matrix and [0] a matrix with all elements 
equal to 0. 

The solution of system (I 7) gives us L&(O) and 
L,,(L), from which L,&b) and L, (1’) can be calculated 

at any position J. 

As defined in equation (I 3b), the spectral radiative 
flux is integrated over all wavelengths to give the total 
radiative flux. 

In fact, at room temperature and considering the 
black body emission spectrum we will limit ourselves 
to the interval [4 pm. 40 pm], To do this we use a 
thin spectra1 slice whose mesh becomes finer near the 
shorter wavelengths. 

The solution of equation (13) is then obtained 
numerically using a finite element method (FEM). 
The thermal conductivity used is that given by Banner 
[7]. Values of the temperature, conductive flux and 
radiative flux are found at every node in the FEM 
mesh. 

Since the problem considered is at room tempera- 
ture, the radiative portion of the heat transfer flux 
does not become too important. never exceeding 50% 
of the total flux. Numerical instabilities do not occur 
and the requirements of the law of conservation of 
energy are satisfied. as we will see below in Table I. 
However, at higher temperatures a relaxation method 
would be necessary to obtain the numerical results. 

5.3. Rrsults 

First we will consider the results concerning the 
radiative transfer. then look at the characteristics of 
the total flux. Verification of the grid size indicated 

that I2 polar steps were sufficient to obtain a correct 
description of the different phenomena [19]. In fact. 
comparing our results with other values calculated 
with 18 polar steps we noted differences never excecd- 
ing 0.5”/0. 

(a) Rudiuticr trumftir. The results presented in this 
article were established with a fibre diameter of 7 ;lrn. 
which is representative of typical fibre size, and gives 
a rough idea of the transfer characteristics. 

Figure 7 exemplifies typical behaviour of the intcn- 
sity distribution of a fibrous medium with fibres strati- 
fied in planes parallel to the boundaries. The heat flux 
is found by integrating equation (I 3b). The spectral 
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Table 1. Flux variations and temperature distribution within 
the medium. The volumetric mass is 20 kg rne3, the thickness 

is IO cm and the wall temperatures are 293 and 303 K 

Radiative Conductive 
Thickness Heat flux flux flux Temperature 

(mm) (W m-‘) (W m-‘) (W mm’) (K) 

0 3.69 0.88 2.81 293.00 
5 3.72 0.93 2.79 293.52 

IO 3.71 0.96 2.75 294.04 
15 3.71 0.98 2.73 294.55 
20 3.71 0.99 2.72 295.06 
25 3.71 1.00 2.71 295.56 
30 3.71 1 .oo 2.71 296.07 
35 3.71 1.00 2.71 296.57 
40 3.71 1.00 2.71 297.07 
45 3.71 1.01 2.70 297.57 
50 3.71 1.01 2.70 298.07 
55 3.71 1.01 2.70 298.57 
60 3.71 1.02 2.69 299.06 
65 3.71 1.03 2.68 299.56 
70 3.71 1.04 2.67 300.05 
75 3.71 1.04 2.67 300.54 
80 3.71 1.04 2.67 301.03 
85 3.71 1.04 2.67 301.51 
90 3.71 I .03 2.68 302.01 
95 3.72 1.00 2.72 302.50 

100 3.69 0.96 2.73 303.00 

radiative flux for two scattering representations, one 

isotropic case and one anisotropic with respect to 
planar fibre distribution, is shown in Fig. 8. It is clear 
that an exact representation of the phase function is 
needed. (The isotropic case underestimates the real 
value of the flux by half.) Another parameter which 

does not appear here is the fibre size. Our calculations 

showed that a diameter of approximately 2 pm mini- 
mizes the heat transfer. 

(b) Combined transfer. The global heat transfer 

flux was calculated for several different volumetric 
masses and temperature gradients. Table 1 presents 
some typical results obtained with the method pre- 

sented here. 
The accuracy of the model predictions can be seen, 

especially since the heat flux defined using the law 
of conservation of energy remains constant. Another 

interesting result is the nearly linear temperature pro- 
file, even though the radiative flux represents approxi- 
mately 27% of the total flux. 

The influence of the volumetric mass is shown in 

Fig. 9. It is interesting to note that there exists a value 
for which the heat transfer is minimized. Below this 

value, the heat flux increases sharply due to an 
increase in the radiative flux. Above this value, the 
influence of radiative transfer is negligible but con- 

ductive heat transfer contributes to an increase in the 

total heat flux. This analysis agrees exactly with the 
behaviour observed thanks to data obtained on a 
guarded hot plates apparatus [7]. 

The influence of the coupling of the heat transfer 
modes can be seen from the temperature distribution. 

In fact, because of the law of the energy conservation, 
the temperature profile is non-linear, but this non- 
linearity is very weak except for very low volumetric 
masses or for large mean temperatures, in which case 
the radiative part becomes predominant. This can be 
seen in Fig. IO where three profiles calculated with 
the same cold wall temperature (T, = 293 K), but with 
various hot wall temperatures (T,, = 303,333 and 363 
K), have been plotted for a medium with thickness 
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Fw. 7. Spectral intensity distribution for several positions within the medium at wavelength 7.55 pm. The 
case of a medium with a volumetric mass of 10 kg mm3, a thickness of 10 cm and with wall temperatures 

of 293 and 303 K. The results are normalized by &[T(L)]. 
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-: Anisotropic scattering model 

---: Isotropic scattering model 

10 15 20 

Wavelength (microns) 

FIG. 8. Spectral radiative flux as a function of wavelength for two scattering representations. The case of 
a medium with a volumetric mass of IO kg m ’ a thickness of IO cm and with wall temperatures of 293 , 

and 303 K. The results are normalized by Sup (Q,,). 

IO cm. As r, increases, the radiative contribution transfer. The method presented here is based on a 
increases. This leads to a curvature of the temperature spatial discrctization tcchniquc that allows us to 
distribution. Note that at conditions such as these express the radiative transfer equation in matrix form. 
which are close to room temperature, the deviation of The solution is then written using the characteristic 
the profiles from iinearity is only very slight. properties of the medium which are the transmission 

and the reflection matrices. Since all parameters arc 

6. CONCLUDING REMARKS 
taken into account, i.e. the medium morphology, 

optical properties, spectral variations and anisotropic 
We are able to calculate the radiative properties of scattering effects, the model results obtained agree 

fibrous media. and then to accurately model radiatikc cxtrcmcly well with available experimental data. 
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Flc;. 9. Global heat flux (W m ‘) as a function of medium volumetric mass (kg mm ‘). The cast of a medium 
with a thickness of 10 cm and with wall temperatures of 293 and 303 K. 
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--- 
: linear temperature profile 

330 - 

320 - 

Tm=298 K 

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

Medium thickness (m) 

FIG. IO. Temperature distribution within the medium. The volumetric mass is 10 kg mm’ and the thickness 
is IO cm. The cold wall is at temperature T,(O) = 293 K and the temperature of the hot wall is successively 

taken at T,(L) = 303, 333 and 363 K. T, is the mean temperature of the medium. 

A more elaborate verification is currently in perature for plane geometry, AIAA J. 13, 1203-1211 

process. (1975). 

Note that the method proposed here may be applied 
to any kind of fibrous media. Moreover, no sim- 

plifications such as isotropic scattering or hemi- 
spherical isotropy, which are often encountered in 

other model formulations, have been used. 
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